The H positions calculated for $MnSO_4.4H_2O$ deviate on the average by as much as 0.2 Å from the corresponding neutron-diffraction values given by Bauer (1964) for MgSO₄.4H₂O, which is isostructural with MnSO₄.4H₂O. The n.m.r. vectors given for MgS₂O₃.6H₂O appear to disagree with the hydrogen-bonding scheme suggested by the X-ray investigators (Nardelli, Fava & Giraldi, 1962). Both these compounds have been reexamined in this laboratory. The resonance component lines for MnSO₄.4H₂O appear to be rather wide providing no room for improvement over the measurements made by Rao. However, the n.m.r. results for MgS₂O₃.6H₂O appear to be in excellent agreement with the predictions of Nardelli *et al.* (1962).

The author is grateful to the American University of Beirut for the use of their IBM 1604 computer to calculate some of the results in Table 1.

References

- ALEKSANDROV, K. S., LUNDIN, A. G. & MIKHAILOV, G. M. (1960). Kristallografiya, 5, 84.
- BAUR, W. H. (1964). Acta Cryst. 17, 863.
- BAUR, W. H. (1965). Acta Cryst. 19, 909.
- BEEVERS, C. A. (1958). Acta Cryst. 11, 273.
- BEEVERS, C. A. & SCHWARTZ, C. M. (1935). Z. Kristallogr. 91, 157.
- CHROBAK, J. (1934). Z. Kristallogr. 88, 35.
- EL SAFFAR, Z. M. (1966a). J. Chem. Phys. 45, 4643.
- EL SAFFAR, Z. M. (1966b). J. Phys. Soc. Japan, 21, 1844.
- EL SAFFAR, Z. M. (1967). J. Chem. Phys. 46, 396.
- EL SAFFAR, Z. M. & BROWN, G. M. (1968). Acta Cryst. To be published.
- EL SAFFAR, Z. M. & MURTY, C. R. K. (1962). Acta Cryst. 15, 285.
- GABUDA, S. P. (1962). Doklady Akad. Nauk SSSR, 146, 840.
- HARPER, J. P. (1936). Z. Kristallogr. 95, 266.
- Heide, H. G. & Boll-Dornberger, K. (1955). Acta Cryst. 8, 425.
- ITOH, J., KUSAKA, R., KIRIYAMA, R. & SAITO, Y. (1957). Mem. Inst. Sci. Ind. Res. 14, 1.
- ITOH, J., KUSAKA, R., YAMAGATA, Y., KIRIYAMA, R. & IBAMOTO, H. (1952). J. Chem. Phys. 20, 1503.
- ITOH, J., KUSAKA, R., YAMAGATA, Y., KIRIYAMA, R. & IBAMOTO, H. (1953*a*). J. Phys. Soc. Japan, **8**, 293.

- ITOH, J., KUSAKA, R., YAMAGATA, Y., KIRIYAMA, R. & IBAMOTO, H. (1953*b*). *Physica*, **19**, 415.
- ITOH, J., KUSAKA, R., YAMAGATA, Y., KIRIYAMA, R., IBAMOTO, H., KANDA, T. & MASUDA, Y. (1953). *J. Phys. Soc. Japan*, **8**, 287.
- JONES, D. W. & SMITH, J. A. S. (1960). *Trans. Faraday, Soc.* **56**, 638.
- KARTHA, G. (1952). Proc. Indian Acad. Sci. 36, 501.
- MARTINEZ, S., GARCIA-BLANCO, S. & RIVOIR, L. (1956). Acta Cryst. 9, 145.
- MCGILLAVRY, C. H., DE WILDE, J. H. & BIJVOET, J. M. (1938). Z. Kristallogr. 100, 212.
- McGRATH, J. W. & SILVIDI, A. A. (1961). J. Chem. Phys. 34, 322.
- MEIER, W. M. (1960). Z. Kristallogr. 113, 430.
- MURTY, C. R. K. & EL SAFFAR, Z. M. (1962). Acta Cryst. 15, 536.
- NARDELLI, M., FAVA, G. & GIRALDI, G. (1962). Acta Cryst. 15, 227.
- PAKE, G. E. (1948). J. Chem. Phys. 16, 327.
- PENFOLD, B. R. & GRIGOR, J. A. (1959). Acta Cryst. 12, 850.
- RAO, C. R. (1964). Indian J. Pure Appl. Phys. 2, 172.
- SCHEIN, B. J. B., LINGAFELTER, E. C. & STEWART, J. M. (1967). J. Chem. Phys. 47, 5183.
- SMITH, J. A. S. & RICHARDS, R. E. (1952). Trans. Faraday Soc. 48, 307.
- SPENCE, R. D. (1955). J. Chem. Phys. 23, 1166.
- SPENCE, R. D. (1958). J. Chem. Phys. 29, 961.
- SPENCE, R. D., AU, R. & VAN DALEN, P. A. (1964). *Physica*, 30, 1612.
- SPENCE, R. D. & MULLER, J. (1957). J. Chem. Phys. 26, 706.
- SPENCE, R. D. & NAGARAJAN, V. (1957). Phys. Rev. 149, 191.
- TAYLOR, P. G. & BEEVERS, C. A. (1952). Acta Cryst. 5, 341.
 TORRIE, B. H., BROWN, I. D. & PETCH, H. E. (1964). Canad.
 J. Phys. 42, 229.
- VAN MEERSSCHE, M., DEREPPE, J. M. & LOBO, P. W. (1961). Bull. Soc. chim. France, p. 2217.
- VAN MEERSSCHE, M., DEREPPE, J. M. & LOBO, P. W. (1962). Bull. Soc. chim. France, p. 1035.
- VAN MEERSSCHE, M., DEREPPE, J. M. & LOBO, P. W. (1963). Acta Cryst. 16, 95.
- VISWESWARAMURTHY, S. (1963). Acta Cryst. 16, 933.
- ZACHARIASEN, W. H. & PLETTINGER, H. A. (1963). Acta Cryst. 16, 376.

Acta Cryst. (1968). B24, 1133

Refinement of the structure of diaquobisglycinatonickel(II), Ni(NH₂CH₂COO)₂(OH₂)₂. By H.C. FREEMAN and J. M. GUSS, School of Chemistry, University of Sydney, Sydney 2006, Australia

(Received 12 March 1968)

The structure of diaquobisglycinatonickel(II), determined by Stosick (J. Amer. Chem. Soc. (1945) 67, 365) from three projections, has been refined with use of three-dimensional data. The metal-donor bond-lengths are Ni-N(amino) 2.08 Å, Ni-O(carboxyl) 2.06 Å, Ni-O(water) 2.10 Å, and the angle N(amino)-Ni-O(carboxyl) is 81.1°.

The structure of diaquobisglycinatonickel(II) was determined by Stosick (1945) from three incompletely resolved projections. In order to obtain accurate values of bond lengths and angles for subsequent comparison with the dimensions of nickel-peptide complexes, the structure has been reinvestigated with three-dimensional data.

The cell data are shown in Table 1. The unit-cell dimensions were determined from 104 values of θ between 58° and 81°, measured on h0l and hk0 Weissenberg photographs calibrated with aluminum powder lines. The cell parameters

were refined in ten cycles of non-linear least-squares as functions of $\sin^2 \theta$. The density was determined by flotation.

Table 1. Crystal data

C₄H₁₂O₆N₂Ni F.W. 242·7 Monoclinic. a = 7.625(5), b = 6.596(5), c = 9.670(5) Å, $\beta = 116.57(1)^{\circ}$, U = 435.0 Å³. $D_m = 1.86$, $D_x = 1.85$ g.cm⁻³, Z = 2. λ (Cu K α_1) = 1.5405 Å, λ (Cu K α_2) = 1.5443 Å, a(A1) = 4.04925 Å, $\mu = 34$ cm⁻¹. Space group $P2_1/c$ from systematic absences (0k0 absent for k = 2n + 1, h0l absent for l = 2n + 1). Two overlapping sets of data, h0l through h5land hk0 through hk8, were recorded with the same crystal specimen. Cu K α radiation was used. The intensities were measured visually on Weissenberg photographs, by comparison with a series of calibrated spots. The number of independent reflexions was 967, of which 74 were unobservably weak. The data were correlated by the least-squares method of Rae (1965). Lorentz, polarization and Tunell factors, but not absorption corrections, were applied.

A modified version of the program ORFLS (Busing, Martin & Levy, 1962) was used for the full-matrix leastsquares refinement. The function minimized was $\Sigma w ||F_o| - |F_c||^2$. The weights w were given by the function $w = 0.632/[1 + ((F_o - 15)/12)^2]$, derived from a plot of $||F_o| -$ $|F_c||$ versus $|F_o|$. The atomic scattering factors of Cromer & Waber (1965) for C, N, O and Ni²⁺ were used. The values for Ni²⁺ were corrected for the real part of the anomalous scattering by subtracting 3·1 electrons over the entire sin θ range (*International Tables for X-ray Crystallography*, 1962). In the fifth cycle of refinement with anisotropic temperature factors for all atoms, no parameter shifted by more than 0·02 e.s.d. The final residual was R=0.095. The positions of the hydrogen atoms could not be inferred with certainty from a difference Fourier synthesis computed after the refinement converged.

The final positional and thermal parameters are shown in Table 2, the observed and calculated structure amplitudes in Table 3, and the interatomic distances and bond angles

Table 2. Final positional parameters (×10⁴), and coefficients B_{ij} (×10⁴) in the expression $\exp - \{B_{11}h^2 + B_{22}k^2 + B_{33}l^2 + 2B_{23}kl + 2B_{13}hl + 2B_{12}hk\}$, (all with their standard deviations in parentheses)

	x/a	y/b	z/c	B_{11}	B_{22}	B ₃₃	B_{12}	B ₁₃	B ₂₃
Ni	0	0	0	44 (2)	54 (3)	33 (2)	1 (2)	26 (2)	-3(2)
N	2766 (7)	0413 (7)	0123 (6)	74 (10)	57 (11)	60 (6)	3 (7)	43 (7)	-10 (6)
C(1)	3249 (9)	2575 (10)	0378 (8)	64 (11)	85 (13)	76 (9)	-19 (10)	47 (8)	-26 (9)
C(2)	2278 (8)	3553 (9)	1280 (6)	65 (11)	73 (12)	33 (7)	0 (10)	21 (7)	-8 (8)
O (1)	0698 (6)	2736 (7)	1158 (5)	92 (9)	83 (9)	67 (6)	-17 (8)	55 (6)	- 26 (6)
O(2)	3065 (7)	5096 (7)	2078 (6)	123 (10)	123 (11)	87 (7)	-26 (9)	37 (7)	-42 (8)
O(3)	1305 (6)	-1438 (7)	2166 (5)	83 (9)	96 (10)	54 (6)	17 (7)	38 (6)	15 (6)

Table 3. Observed and calculated structure amplitudes $(\times 10)$

Table 4. Distances and angles in diaguobisglycinatonickel(II)

Code fo	r superscripts:				
	Atom at	Atom at			
(none) // // iv	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{ccccc} v & 1-x, & \frac{1}{2}+y \\ v_{1} & -x, & \frac{1}{2}+y \\ v_{1i} & x, & -1+y \\ v_{1ii} & 1-x, & -\frac{1}{2}+y \\ ix & x, & \frac{1}{2}-y \end{array} $	$\begin{array}{c} \frac{1}{2} - z \\ \frac{1}{2} - z \\ \frac{z}{2} - z \\ \frac{1}{2} - z \\ \frac{1}{2} - z \\ \frac{1}{2} + z \end{array}$		
(a) Bond-l (E.s.d.'s=	engths 0·01 Å)	(b) Bond angles (E.s.d.'s in parentheses)			
$\begin{array}{l} Ni & -N \\ Ni & -O(1) \\ Ni & -O(3) \\ N &C(1) \\ C(1) - C(2) \\ C(2) - O(1) \\ C(2) - O(2) \end{array}$	2.08 Å 2.06 2.10 1.47 1.52 1.28 1.26	$\begin{array}{c} N & \longrightarrow Ni & \longrightarrow O(1) \\ N & \longrightarrow Ni & \longrightarrow O(3) \\ O(1) - Ni & \longrightarrow O(3) \\ Ni & \longrightarrow N & \longrightarrow C(1) \\ N & \longrightarrow C(1) - C(2) \\ C(1) - C(2) - O(1) \\ C(1) - C(2) - O(2) \\ O(1) - C(2) - O(2) \\ O(1) - C(2) - O(2) \\ C(2) - O(1) - Ni \end{array}$	81·1 (5)° 89·2 (5) 87·8 (5) 108·1 (5) 111·1 (6) 116·8 (7) 118·4 (7) 124·8 (9) 115·0 (6)		

(c) Hydrogen-bonds and closest non-bonded contact (E.s.d.'s = 0.01 Å)

$O(1) \cdots H - O(3^{vi})$	$O(3) - H \cdots O(1'')$	2·73 Å
$O(2) \cdots H - O(3^{iv})$	$O(3)-H\cdots O(2^{vii})$	2.67
$O(2) \cdots H - N''$	$N - H \cdots O(2^{ix})$	3.07
$O(2) \cdots N^{v}$	N $\cdots O(2^{viii})$	3.31

(d) Bond angles at hydrogen-bonded atoms

$Ni - N \cdots O(2^{ix})$	116·1°	$C(2) = O(2) \cdots O(3^{iv})$	127.2
$C(1)-N\cdots O(2^{ix})$	98.4	$N'' \cdots O(2) \cdots O(3^{iv})$	79.0
$Ni - O(1) \cdots O(3^{vi})$	114.8	NiO(3)···O(1 ⁱⁱⁱ)	122.7
$C(2)-O(1)\cdots O(3^{vi})$	128.0	NiO(3)···O(2 ^{vii})	112.0
$C(2)-O(2)\cdots N''$	106.3	$O(1''') \cdots O(3) \cdots O(2^{vii})$	105.7

in Table 4. The oxygen atom of the water molecule is represented by O(3). Both single and stereoscopic views of the structure have already been published elsewhere (Freeman, Guss & Sinclair, 1968; Freeman, 1967b).

Discussion

Comparisons of this structure with those of glycine (Marsh. 1958) and bisglycinatocopper(II) hydrate (Freeman, Snow, Nitta & Tomita, 1964) show that the dimensions of the amino acid are not significantly changed by chelation. Because the metal-ligand bond-lengths in the Ni(II) complex are 0.08 Å longer, the N(amino)-metal-O(carboxyl) angles in the chelate rings are 4° smaller than in the Cu(II) complex. The degree of 'puckering' of the glycinatonickel(II) chelate rings is among the highest recorded for a-amino acid complexes (Freeman, 1967a). The Ni and N(amino) atoms lie at 0.26 and 0.61 Å from the plane of the carboxyl group, respectively [compared with deviations of 0.006, -0.103 Å and 0.126, 0.162 Å in the crystallographically independent chelate rings in bisglycinatocopper(II) hydrate]. The only respect in which our description of the structure differs from Stosick's is that we do not identify the vector from the N(amino) atom to O(2viii) as a potential hydrogen bond. The atoms are 3.13 Å apart and the interatomic

vector makes unacceptable angles with the bonds at the N(amino) atom.

This work was supported by grants GM-10867 from the Institute of General Medical Sciences, U.S. Public Health Service, and 65/15552 from the Australian Research Grants Committee. J.M.G. gratefully acknowledges the award of a Union Carbide (Aust.) Ltd. Scholarship.

References

- BUSING, W. R., MARTIN, K. O. & LEVY, H. A. (1962). Report ORNL-TM-305. Oak Ridge National Laboratory, Tennessee.
- CROMER, D. T. & WABER, J. T. (1965). Acta Cryst. 18, 104.
- FREEMAN, H. C. (1967a). Advanc. Protein Chem. 22, 303.
- FREEMAN, H. C. (1967b). Advanc. Protein Chem. 22, 391.
- FREEMAN, H. C., GUSS, J. M. & SINCLAIR, R. L. (1968). Chem. Comm. p. 485.
- FREEMAN, H. C., SNOW, M. R., NITTA, I. & TOMITA, K. (1964). Acta Cryst. 17, 1463.
- International Tables for X-ray Crystallography (1962). Vol. III, p. 214. Birmingham: Kynoch Press.
- MARSH, R. E. (1958). Acta Cryst. 11, 654.
- RAE, A. D. (1965). Acta Cryst. 19, 683.
- STOSICK, A. J. (1945). J. Amer. Chem. Soc. 67, 365.